Monthly Archives: April 2012

Bahan Penyerap Suara (Absorption Material)

Bahan Penyerap Suara memiliki tugas penting didalam mengendalikan medan suara didalam ruangan sesuai dengan fungsi ruangan tersebut. Bahan penyerap suara ini seringkali disebut sebagai material kedap suara, sebuah istilah yang menurut hemat penulis adalah sebuah istilah yang tidak tepat. Dalam sebuah konsep akustik ruangan, harus dibedakan antara fungsi kedap (sound proofing) dan fungsi pengendalian (sound controling). Dalam kedua fungsi, diperlukan bahan penyerap suara ini.
Ada dua tipe utama bahan penyerap suara, yaitu Bahan Penyerap Suara Berpori (Porous Absorber) dan Bahan Penyerap Suara tipe Resonansi (resonant Absorber). Kedua tipe penyerap suara ini berbeda dalam hal mekanisme penyerapan energi suara.
Bahan berpori seperti karpet, korden, foam, glasswool, rockwool, cellulose fiber, dan material lunak lainnya, menyerap energi suara melalui energi gesekan yang terjadi antara komponen kecepatan gelombang suara dengan permukaan materialnya. Bahan penyerap suara tipe ini akan menyerap energi suara lebih besar di frekuensi tinggi.
Tipikal kurva karakteristik penyerapan energi suaranya sebagai fungsi frekuensi, dapat dilihat pada gambar berikut:

(c) D.M. Howard & J. Angus: Acoustics and Psychoacoustics, 3rd ed

Bahan penyerap suara ini akan menyerap energi suara lebih besar pada frekuensi rendah atau menengah, apabila jarak material ke dinding atau ketebalan material bila ditempel langsung ke dinding lebih besar daripada seperempat panjang gelombang yang ingin dikendalikan, sebagai mana terlihat pada kurva berikut:

(c) D.M. Howard & J. Angus: Acoustics and Psychoacoustics, 3rd ed.

Bahan penyerap suara tipe resonansi seperti panel kayu tipis, menyerap energi suara dengan cara mengubah energi suara yang datang menjadi getaran, yang kemudian diubah menjadi energi gesek oleh material berpori yang ada di dalamnya (misal oleh udara, atau material berpori). Ini berarti, material tipe ini lebih sensitif terhadap komponen tekanan dari gelombang suara yang datang, sehingga lebih efektif apabila ditempelkan pada dinding. Bahan penyerap tipe ini lebih dominan menyerap energi suara ber frekuensi rendah. Frekuensi resonansi bahan ini ditentukan oleh kerapatan massa dari panel dan kedalaman (tebal) rongga udara dibaliknya .
Tipikal respon frekuensi bahan penyerap tipe ini adalah sebagai berikut:

(c) D.M. Howard & J. Angus : Acoustics and Psychoacoustics, 4 ed.

Tipe lain dari bahan penyerap suara ini adalah apa yang disebut sebagai Resonator Helmholtz. Efektifitas bahan penyerap suara tipe ini ditentukan oleh adanya udara yang terperangkap di “pipa atau leher” diatas bidang berisi udara (bentukan seperti leher botol dsb). Permukaan berlobang menjadi ciri utama resonator yang bekerja pada frekuensi tertentu, tergantung pada ukuran lubang, leher, dan volume ruang udaranya.

(c) D.M. Howard & J. Angus : Acoustics and Psychoacoustics, 4 ed.

Apabila diinginkan sebuah dinding yang memiliki frekuensi kerja yang lebar (rendah, menengah, dan tinggi), maka harus digunakan gabungan ketiga bahan penyerap suara tersebut. Kombinasi antara proses gesekan dari komponen kecepatan gelombang suara dan resonansi dari komponen tekanan gelombang suara, akan membuat kinerja penyerapan energi suara oleh dinding atau partisi besar untuk seluruh daerah frekuensi.

(c) D.M. Howard & J. Angus : Acoustics and Psychoacoustics, 4 ed.

Respons Frekuensi Ruangan

Secara umum, sebuah ruangan tertutup dapat dibagi menjadi 3 bagian berdasarkan respons frekuensinya. Bagian pertama merupakan daerah frekuensi yang dibatasi oleh frekuensi cut off ruangan. Pada bagian ini, analisis frekuensi harus dititik beratkan pada tekanan suara sumber yang dimainkan dalam ruangan. Frekuensi cut off sendiri dapat dihitung dengan persamaan berikut:

      freq cut off = c/(2 x dimensi terpanjang ruang), dengan c adalah cepat rambat suara di udara.

Bagian kedua atau region kedua adalah daerah frekuensi yang didominasi modes ruang dan disebut sebagai daerah modal (modal region), yaitu daerah frekuensi mulai dari frekuensi cut off sampai dengan frekuensi kritis ruang. Pada daerah frekuensi ini, analisis harus lebih difokuskan pada karakterisitik modes ruang. (penjelasan menggunakan pendekatan medan difuse cenderung akan gagal). Frekuensi kritis ruang dapat dicari dengan dua pendekatan. Yang pertama menggunakan pendekatan Main Free Path, yang merupakan fungsi dari Volume (V) dan Luas Permukaan Ruangan (S), dimana MFP = 4V/S. Frekuensi kritis dengan pendekatan MFP ini dapat dihitung dengan persamaan berikut:

     frek kritis = (3/2) [c/MFP] , dengan c adalah cepat rambat suara di udara.

Pendekatan kedua didapatkan dengan memanfaatkan perhitung waktu dengung (RT atau T60). Dengan pendekatan ini, frekuensi kritis dapat dihitung dengan formulasi sebagai berikut:

   frek kritis = 2012 [akar kuadrat(T60/V)], dimana V adalah volume ruangan.

Daerah frekuensi ketiga, yaitu daerah frekuensi diatas frekuensi kritis, disebut sebagai daerah diffuse alias diffuse region, dimana medan diffuse dapat terjadi, sehingga konsep waktu dengung (reverberation time) bisa diterapkan.

Konsep frekuensi kritis tersebut, dapat juga digunakan untuk mengkategorikan ruangan dari sudut pandang akustik. Ada dua kategori ruang yang bisa dibuat dari sudut pandang ini, yaitu ruangan besar (large room) dan ruangan kecil (small room). Ruangan besar adalah sebuah ruangan yang memiliki frekuensi kritis lebih rendah daripada frekuensi terendah sumber suara yang dimainkan dalam ruangan tersebut. Sedangkan ruangan kecil adalah sebuah ruangan yang memiliki frekuensi kritis didalam range frekuensi sumber suara yang dimainkan dalam ruangan tersebut. Contoh ruangan besar misalnya Ruang Konser Philharmonik (Concert Hall), Katedral, dan ruangan studio rekaman berukuran besar. Contoh ruangan kecil adalah Kamar tidur, kamar mandi atau normal size living room.